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Appendix A. Survival Identification and Survival-Related Summary Statistics  

Figure A1. Example of Closure Time Identification 

 
 

Figure A2. Survival Rate by Top 10 Cuisine Types  

 
The error bars represent  1 times the standard error of each point estimate. 
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Figure A3. Survival Rate by State  

 
States listed alphabetically. The error bars represent  1 times the standard error of each point estimate. 

 

To investigate model-free evidence supporting our conjecture that consumer-posted photos may 

serve as a leading indicator of restaurant survival, we compare the proportions of closed and open 

restaurants that have: 1) non-increasing numbers of photos; 2) non-increasing proportion of photos with 

helpful votes in each year; 3) non-increasing proportion of food photos in each year. We also include the 

proportion of food photos in this comparison because our paper suggests that food photos are more 

predictive of survival that other photo content. Using numbers of photos as an example, for the year 2014, 

we first find restaurants that were closed and those that were still open in 2014. We then check whether 

each restaurant received fewer photos during 2013 than in 2012. Lastly, we calculate the proportion of 

restaurants with a non-increasing number of photos among closed and open restaurants, respectively. To 

make our comparisons more reliable, we conduct such comparisons only in years with at least 20 open 

and at least 20 closed restaurants. This comparison is similar in spirit to a difference-in-difference 

approach: last year vs. the year before last difference and closed vs. open difference. Such a difference-in-

difference approach is superior to plotting the total numbers of photos for open vs. closed restaurants 

directly because it takes the baseline differences between the two groups of restaurants into account.  

Figure A4 shows the comparison results. We observe that the red dots representing proportions 

among closed restaurants are generally above the green triangles representing proportions among open 

restaurants. Such patterns indicate that, by and large, restaurants near closure are more likely to have non-

increasing photo volume, proportion of photos with helpful votes, and proportion of food photos than are 

open restaurants. These comparisons provide model-free evidence that photo volume, proportion of 

photos with helpful votes, and proportion of food photos may be predictive of restaurant survival after the 

macro year-trend is controlled.
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Figure A4. Photo Volume, % of Photos with Helpful Votes, and % of Food Photos Trends Comparisons Across Years 

 
The error bars represent  1 times the standard error of each point estimate.  
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As a benchmark, we compare the proportions of closed and open restaurants that have: 1) non-

increasing numbers of reviews; 2) non-increasing proportion of reviews with helpful votes in each year. 

Figure A5 shows that restaurants near closure are more likely to have non-increasing review volume than 

open restaurants. However, such a trend is not as apparent when it comes to the proportion of reviews 

with helpful votes for restaurants, indicating the proportion of reviews with helpful votes may not be as 

predictive of restaurant survival as its counterpart in photos. 

 

Figure A5. Review Volume and % of Reviews with Helpful Votes Trend Comparison Across Years 

 
The error bars represent  1 times the standard error of each point estimate. 
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We also compare the proportions of closed and open restaurants that have: 1) non-increasing 

numbers of photos; 2) non-increasing proportion of photos with helpful votes; 3) non-increasing 

proportion of food photos at each restaurant age. For example, for the age=3, we first find restaurants that 

were closed and those that were still open at age=3. We then check whether each restaurant received 

fewer photos at age=2 than at age=1. Lastly, we calculate the proportion of restaurants with a non-

increasing number of photos among closed and open restaurants, respectively. To make reliable 

comparisons, we conduct comparisons only in ages with at least 20 open and at least 20 closed 

restaurants. To compare volume and helpful votes in the last two years, we also have to choose 

restaurants that lived more than two years and listed on Yelp for more than two years. Based on all 

considerations above, we plot comparisons for ages between 3 and 11 in Figures A6 an A7. 

Similar to the comparison across calendar years, Figure A6 shows that the red dots representing 

proportions among closed restaurants are generally above the green triangles representing proportions 

among open restaurants. Such patterns again indicate that, by and large, restaurants near closure are more 

likely to have non-increasing photo volume, proportion of photos with helpful votes, and proportion of 

food photos than are open restaurants. These comparisons also provide model-free evidence that photos 

may be predictive for restaurant survival after controlling for restaurant age. 
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Figure A6. Photo Volume, % of Photos with Helpful Votes, and % of Food Photos Trends Comparisons Across Ages 

The error bars represent  1 times the standard error of each point estimate. 
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 As a benchmark, we also compare the proportions of closed and open restaurants that have: 1) 

non-increasing numbers of reviews; 2) non-increasing proportion of reviews with helpful votes at each 

restaurant age. Figure A7 shows that restaurants near closure are more likely to have non-increasing 

review volume than open restaurants. Nevertheless, such a trend is not apparent for the proportion of 

reviews with helpful votes, indicating again the proportion of reviews with helpful votes may not be as 

predictive of restaurant survival as its counterpart in photos. 

Figure A7. Review Volume and % of Reviews with Helpful Votes Trend Comparison Across Ages 

 
The error bars represent  1 times the standard error of each point estimate. 
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Appendix B. Photo Analysis 

Clarifai Labels 

 Clarifai, a photo-based API specializing in computer vision, was founded by Matthew Zeiler, 

author of “Visualizing and Understanding Convolutional Networks” (Zeiler and Fergus 2014). Clarifai 

has been a market leader in photo content detection since it won the top five places in photo classification 

at the ImageNet 2013 competition. 

We use the Clarifai “Food” model to identify objects in food and drink photos as per the 

classification on Yelp. The “Food” model is designed to process photos of food and drink.1 Upon 

comparing APIs provided by Google, Microsoft, Amazon, and Clarifai, we find that Clarifai can provide 

the most refined labels for food. For example, only Clarifai could label content as refined as “strawberry” 

in a photo when we compare these APIs. Figure A8 provides four examples of food and drink photos with 

labels and probabilities provided by the Clarifai “Food” model. The Clarifai API does a good job in 

recognizing a large variety of food ingredients in a photo.  

 

Figure A8. Examples of Clarifai Labels for Food and Drink Photos 

    
pizza 1 

crust 0.999 

pepperoni 0.999 

dough 0.999 

sauce 0.998 

mozzarella 0.998 

tomato 0.994 

salami 0.99 

basil 0.77 

meat 0.715 
 

sushi 1 

salmon 0.998 

nori 0.99 

seafood 0.983 

rice 0.952 

sashimi 0.941 

fish 0.94 

caviar 0.911 

shrimp 0.903 

nigiri 0.85 
 

corn 1 

corn salad 0.987 

vegetable 0.978 

salad 0.977 

onion 0.895 

tomato 0.872 

lettuce 0.615 
 

strawberry 1 

fruit 0.998 

berry 0.998 

mint 0.997 

refreshment 0.991 

ice 0.963 

glass 0.943 

juice 0.941 
 

 

We use the Clarifai “General” model for interior, outside, menu, and other photos as per the 

classification of Yelp. The ‘General’ model recognizes over 11,000 different labels.2 Figure A9 shows 

four examples of restaurant photos with labels and probabilities provided by the Clarifai “General” 

model.  

 

 
1 https://clarifai.com/models/food-image-recognition-model-bd367be194cf45149e75f01d59f77ba7  
2 https://clarifai.com/models/general-image-recognition-model-aaa03c23b3724a16a56b629203edc62c  

  

https://clarifai.com/models/food-image-recognition-model-bd367be194cf45149e75f01d59f77ba7
https://clarifai.com/models/general-image-recognition-model-aaa03c23b3724a16a56b629203edc62c
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Figure A9. Examples of Clarifai Labels for Interior and Outside Restaurant Photos 

    
people 0.993 

restaurant 0.991 

adult 0.977 

man 0.966 

dining 0.957 

indoors 0.941 

drink 0.933 

woman 0.93 

table 0.93 

wine 0.882 

group 0.879 

candle 0.866 

service 0.861 
 

restaurant 0.988 

dining 0.983 

table 0.974 

people 0.954 

interior design 0.949 

chair 0.937 

indoors 0.914 

bar 0.9 

man 0.875 

group 0.875 

seat 0.852 

woman 0.846 

cafeteria 0.842 
 

street 0.98 

city 0.968 

no person 0.957 

urban 0.952 

building 0.932 

commerce 0.9 

restaurant 0.9 

light 0.896 

window 0.876 

town 0.861 

  
 

outdoors 0.979 

no person 0.972 

sky 0.949 

light 0.942 

dusk 0.931 

evening 0.922 

nightlife 0.916 

city 0.915 

street 0.886 

  
 

 

We include only labels with more than 50 percent confidence according to the Clarifai API, 

resulting in a total of 5,080 unique labels. Table A1 shows the top 100 Clarifai labels. 

 

Table A1. Top 100 Clarifai Labels 

sauce shrimp pizza lettuce salsa 

chicken table avocado seat street 

cheese people drink lamb milk 

pork onion cheddar ice duck 

meat pepper wine outdoors group 

bacon chocolate text pasta corn 

beef cake city mushroom house 

vegetable egg tuna tacos toast 

garlic butter plate dinner apple 

rice salmon coffee ham mozzarella 

salad seafood refreshment chips ginger 

sweet sandwich lemon dairy product shop 

cream bar chair bun pastry 

bread chili turkey lunch sign 

potato sausage beans curry cuisine 

food room tea dish window 

indoors soup spinach inside basil 

steak beer lobster hotel noodle 

tomato meal sushi honey light 

fish crab pie ramen lime 
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Topic Modeling of Clarifai Labels  

 We randomly sampled 10,000 photos to calibrate the LDA model for topic modeling, with 80% 

for training and 20% for testing. We implemented the LDA model using a Python library “GENSIM” 

(Rehurek and Sojka 2010), a widely used Python library for topic modeling. We used the online 

variational inference algorithm for the LDA training (Hoffman, Bach, and Blei 2010). We used all the 

1,281 labels that Clarifai identified in more than 0.05% of photos. Removing rare labels reduces the risk 

that the results are influenced by outlier labels (Netzer et al. 2019; Tirunillai and Tellis 2014). We ran the 

model with 2 to 40 topics on the training dataset. We found that the fitted LDA with 10 topics yielded the 

highest topic coherence score (Röder et al. 2015) on the testing dataset. Table A2 presents the 10 topics 

and the most representative words for each topic based on the relevance score calculated using 𝜆 = 0.5 

(Sievert and Shirley 2014). Intuitively, the representative words for a topic tend to appear together 

(Tirunillai and Tellis 2014). 

 

Table A2. The 10 LDA Topics and Representative Words with Highest Relevance 

(Topics are listed in an arbitrary order) 

ID Topic name Representative words with highest relevance 

1 Symbol and decoration Illustration, symbol, sign, design, retro, art, image, text, vintage, decoration 

2 Seafood Fish, seafood, salmon, tuna, sushi, shrimp, crab, sashimi, lobster, nigiri 

3 Text and information Page, text, number, document, paper, time, information, form, order, writing 

4 Meat Pork, beef, chicken, steak, lamb, meat, duck, rib, broth, tenderloin 

5 Inside Chair, indoors, room, seat, table, bar, inside, dining, interior design, counter 

6 People 
Portrait, people, music, recreation, festival, wear, performance, group, 

celebration, facial expression 

7 dessert Chocolate, cake, cream, ice, tea, sweet, coffee, strawberry, ice cream, dessert 

8 Outside Outdoors, city, street, road, vehicle, light, urban, daylight, entrance, sky 

9 food and drink Meal, refreshment, plate, dinner, lunch, dish, cuisine, fruit, glass, drink 

10 Sandwich and pizza 
Cheese, bacon, sandwich, bread, cheddar, pizza, sausage, chicken, tomato, 

ham 

 

 In the extrapolation step, we applied the calibrated LDA parameters to extract topic distribution 

for each photo in our entire data set of 755,758 photos. Following the standard approach (Netzer et al. 

2019), a 10-dimensional topic distribution vector was generated for each photo. Each dimension 

represented the empirical percentage of Clarifai labels assigned to a topic, with all percentages summing 

up to 1. For example, the topic distribution for one photo could be [5%, 5%, 15%, 15 %, 10%, 10%, 0%, 

0 %, 20%, 20%]. We then used the average topic distribution for photos for each restaurant-year as inputs 

for our prediction model. 
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Photographic Attributes 

Table A3. Definitions of Photographic Attributes  

Types Attributes  Description 

Color 

Brightness  
Brightness refers to the overall lightness or darkness of the 

photo. 

Saturation 
Saturation indicates color purity. Pure colors in a photo tend to 

be more appealing than dull or impure ones. 

Contrast Contrast is the difference in brightness between regions. 

Clarity  The proportion of pixels with enough brightness. 

Warm hue The proportion of warm color in a photo. 

Colorfulness  
It distinguishes multi-colored photos from monochromatic, 

sepia, or simply low contrast photos. 

Composition  

Diagonal dominance  
Measures how close the main region in the photo is positioned 

to diagonal lines. 

Rule of thirds 

The “golden ratio” (about 0.618). The photo is divided into 

nine equal segments by two vertical and two horizontal lines. 

The rule of thirds says that the most important elements are 

positioned near the intersections. 

Physical visual 

balance  

It measures how symmetrical a photo is around its central 

vertical line (horizontal physical balance) or central horizontal 

line (vertical physical balance). 

Color visual balance  

It measures how symmetrical the colors of a photo are around 

its central vertical line (horizontal color balance) or central 

horizontal line (vertical color balance). 

Figure-

ground  

relationship   

Size difference It measures how much bigger the figure is than the ground. 

Color difference 
It measures how different the color of the figure is from that of 

the ground. 

Texture difference 
It measures how different the texture of the figure is from that 

of the ground. 

Depth of field  
The range of distance from a camera that is acceptably sharp in 

a photo. 

 

Color For the first five color features, we first convert photos from RGB space to HSV space (each pixel 

is a 3-dimensional vector representing hue, saturation, and value). In the following, we explain how we 

extract each attribute for color. 

1. Brightness is the average of the value dimension of HSV across pixels (Datta et al. 2006). We 

normalized brightness to be between 0 and 1, with a higher score meaning brighter. 

2. Saturation is the average of saturation cross pixels (Datta et al. 2006). We normalized saturation to 

be between 0 and 1, with a higher score meaning more saturated. 

3. Contrast of brightness was calculated as the standard deviation of the value dimension of HSV cross 

pixels. We normalize the score to be between 0 and 1, with a higher score meaning higher contrast. 

4. Clarity We first normalize the value dimension of HSV to be between 0 and 1, and we define a pixel 

to be of enough clarity if its value is bigger than 0.7. Then clarity is defined as the proportion of 

pixels with enough clarity.  

5. Warm hue Following Wang et al. (2006), the warm hue level for the photo is the proportion of warm 

hue (i.e., red, orange, yellow) pixels in a photo.  

6. Colorfulness We followed Hasler and Suesstrunk (2003) to measure colorfulness for each photo 

based on the RGB vector of each pixel. We normalized this metric to be between 0 and 1, with a 
higher score meaning more colorful. 
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Composition To compute the four attributes of composition, we first assigned each pixel a saliency score 

based on computer vision methods (Montabone and Soto 2010). Then we separated a photo into 10 

segments based on the superpixel algorithm (Mori et al. 2004; Ren and Malik 2003). The segment with 

the highest average saliency is identified as the salient region (Zhang et al. 2018). Identifying the salient 

region is necessary because diagonal dominance and rule of thirds are defined with respect to the main 

element of a photo. In the following, we explain how we extract each attribute for composition. 

1. Diagonal dominance We calculate the distance between the center of the salient region to each of the 

two diagonals of a photo. We then define diagonal dominance as the negative of the minimum of two 

distances (Wang et al. 2013). We normalize this score to be between 0 and 1, with a higher score 

meaning stronger diagonal dominance. 

2. Rule of thirds We calculate the distance from the center of the salient region to each of the four 

intersections of the two horizontal lines and the two vertical lines that evenly divide the photo into 

nine parts (Datta et al. 2006). Then the rule of thirds is defined as the negative of the minimum of the 

four distances. We normalized this score to be between 0 and 1, with a higher score meaning a 

stronger rule of thirds. 

3. Physical visual balance We calculate two scores for physical visual balance: vertical and horizontal 

physical visual balances. We first calculate the weighted center of the photo by weighting the centers 

of segments by their respective saliency. Then the vertical physical visual balance is defined as the 

negative of the vertical distance between the weighted center and the horizontal line that divides the 

photo into two equal parts. The horizontal physical visual balance is defined as the negative of 

horizontal distance between the weighted center and the vertical line that divides the photo into two 

equal parts (Wang et al. 2013). We normalize the two scores to be between 0 and 1, with a higher 

score meaning a higher balance. 

4. Color visual balance We calculated two scores for color visual balance: vertical and horizontal color 

visual balances. Following Wang et al. (2013), to measure vertical color balance, we first separate the 

photo into two equal parts by a horizontal line. A pair of pixels is a pixel on the top part and its 

symmetric counterpart on the bottom part. Then the vertical color balance is defined as the negative 

of the average of Euclidean distance cross pixel pairs. To measure horizontal color balance, we first 

separate the photo into two equal parts by a vertical line. A pair of pixels is a pixel on the left part and 

its symmetric counterpart on the right part. Then the horizontal color balance is defined as the 

negative of the average of Euclidean distance cross pixel pairs. We normalize the two scores to be 

between 0 and 1, with a higher score meaning higher color balance. 

 

Figure-ground relationship Figure refers to the foreground, and ground refers to the background, of a 

photo. For the first three figure-ground relationship features, we first use the Grabcut algorithm (Rother et 

al. 2004) to identify the figure and background of each photo. In the following, we explain how we 

extract each attribute for the figure-ground relationship. 

1. Size difference We take the difference between the number of pixels of the figure and that of the 

background, normalized by the total number of pixels of the photo (Wang et al. 2013). 

2. Color difference We first calculate the average RGB vectors for figure and ground. Then the color 

difference is the Euclidean distance between the two RGB vectors (Wang et al. 2013). We normalize 

the score to be between 0 and 1, with a higher score meaning a bigger figure-ground color difference. 

3. Texture difference We use the Canny edge detection algorithm (Canny 1987) to detect edges in the 

figure and background. Then we compute the density of edges in the figure and background. The 

texture difference is the absolute value of the difference between figure edge density and background 

edge density. This score is normalized to be between 0 and 1, with a higher score meaning a higher 

difference. 

4. Depth of field Professional photos usually use a low depth of field to enhance the most important 

element in the photo. A photo of a low depth of field is usually sharp in the center while out of focus 

in the surrounding area. We divide the photo into 16 equal regions. Following Datta et al. (2006), we 

compute the Daubechies wavelet coefficients (Daubechies 1992) in the high-frequency for each HSV 
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dimension of a photo. Then we calculate the depth of field by dividing the sum of wavelet of the 

center four regions by the sum of wavelet of the whole photo, for each HSV dimension. Thus, there 

are three scores of the depth of field: depth of field (hue), depth of field (saturation), and depth of 

field (value). A higher score means a lower depth of field. 

 

Table A4. Summary Statistics of Photographic Attributes 
 Count Mean Standard deviation Minimum Maximum 

Color      

Brightness 755,758 0.53 0.13 0.00 1.00 

Saturation 755,758 0.43 0.15 0.00 1.00 

Contrast 755,758 0.47 0.11 0.00 0.99 

Clarity 755,758 0.31 0.20 0.00 1.00 

Warm hue 755,758 0.85 0.17 0.00 1.00 

Colorfulness 755,758 0.25 0.10 0.00 1.00 

Composition      

Diagonal dominance 755,758 0.52 0.17 0.00 1.00 

Rule of thirds 755,758 0.56 0.18 0.00 1.00 

Vertical physical balance 755,758 0.94 0.06 0.00 1.00 

Horizontal physical balance 755,758 0.90 0.08 0.00 1.00 

Vertical color balance 755,758 0.43 0.08 0.00 1.00 

Horizontal color balance 755,758 0.44 0.08 0.02 1.00 

Figure-ground relationship      

Size difference 755,758 0.45 0.19 0.00 1.00 

Color difference 755,758 0.21 0.14 0.00 1.00 

Texture difference 755,758 0.08 0.07 0.00 1.00 

Depth of field (hue) 755,758 0.25 0.13 0.00 1.00 

Depth of field (saturation) 755,758 0.30 0.09 0.00 1.00 

Depth of field (value) 755,758 0.32 0.09 0.00 0.99 
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Photo Caption Sentiments 

 We use VADER (Hutto and Gilbert 2014) sentiment analysis to analyze photo captions. We learn 

that photo captions can be categorized into three categories: neutral dish names captions, positive 

captions, and negative captions. Table A5 shows examples of captions and respective sentiment for each 

category. Figure A10 demonstrates the distribution of caption sentiment. 

 

Table A5. Examples of Caption Classification and Sentiment Scores 

ID Caption Sentiment 

Dish name captions 

Sam & Emma Sandwich 0 

Red velvet pancakes 0 

Our sushi boat 0 

Vegetables 0 

Mandarin Kung Pao Chicken 0 

Positive captions 

Inspiration + food - love it!  0.8356 

I love being transported to another country by their food! 0.6696 

Kiffka pita so good! :) 0.6009 

Negative captions 
This place sucks. Flat beer bad service had to leave -0.7351 

Can i get a bag of salt to add to my sodium overload? -0.3612 

 

 

Figure A10. Distribution of Extracted Caption Sentiment 
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Appendix C. Review Analysis 

Restaurant Quality Dimensions 

 We define the four quality dimensions in Table A6, based on prior literature on restaurant quality 

dimensions (Bujisic et al. 2014; Hyun 2010; Ryu et al. 2012). We first label the 10,000 reviews through a 

Mturk survey. After an introduction of the definition for each restaurant quality dimension, each 

consumer was presented with 20 screens of reviews with one review per screen. The 20 reviews were 

randomly selected from the 10,000 reviews. See Figure A11 for a screenshot of the survey interface. On 

average, it took 20 minutes for each consumer to finish the survey. We removed respondents who finished 

the survey with less than 5 minutes, given that these participants might skim through each review too fast 

and did not provide reliable responses. As a result, each review is on average read by eight consumers.  

We instructed each consumer to answer whether a review mentioned food, service, environment, 

or price of the restaurant; if so, whether the specific content was positive or negative on a 7-point Likert 

scale, with 1 being “extremely negative” and 7 being “extremely positive.” The average of sentiment 

votes was used to label sentiment for each quality dimension mentioned in each review.  

 

Table A6. Definitions of Restaurant Quality Dimensions Extracted from Reviews 

Dimension Definition 

Food 
food, drink, menu variety, nutrition, healthiness, plating, food presentation, serving 

size, freshness, etc. 

Service 
employee behavior, attitude, responsiveness, reliability, tangibility, empathy, 

assurance, process speed, wait time, etc. 

Environment 
interior/exterior design, décor, cleanliness, ambience, aesthetics, lighting, layout, 

table setting, employee appearance, location, etc. 

Price good/bad value for money, price of items, etc. 

 

Figure A11. Restaurant Review Survey 

 
We use a deep learning model to extract the following four quality dimensions from reviews: 

food, service, environment, and price. Each dimension has two labels: whether the dimension was 

mentioned and the sentiment of the dimension. To increase the accuracy of the text-based deep learning 

model, we follow the standard procedure (Timoshenko and Hauser 2019) and use pre-trained word 

embeddings as inputs for our text-based CNN. Specifically, we use GloVe (Pennington et al. 2014) word 

embeddings. GloVe provides an effective measure for the linguistic or semantic similarity of the 

corresponding words. Under GLoVe, each word is represented by a 200-dimensional vector. Each review 

is then represented by a 200  number of words matrix, which serves as the inputs for the text-based 

CNN. 

Figure A12 depicts the structure of the text-based CNN. The left panel of the figure demonstrates 

the entire structure of the text-based CNN. The right panel of this figure depicts the detailed structure of 

Review 1 of 20. This is my first time trying this place and everything was good. We got the tom yum shrimp, duck 

pad thai and mango sticky rice. Service was great too. Will definitely come back again.
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the ConvBlock (the building block of the text-based CNN). The model is constructed in a way that is 

similar to the photo-based CNN — VGG model (Simonyan and Zisserman 2014), just replacing 2-

dimensional convolution with 1-dimensional convolution. The idea is borrowed from Kim (2014), which 

shows that text-based CNN structures adapted from established image-based CNN structures perform 

well on several benchmark datasets. We also add more convolutions and pooling operations because our 

text is relatively long. The input goes through five convolutional blocks (ConvBlock), one global average 

pooling, and two full connections (FC). The guiding principle of convolution is to identify those features 

that can best predict the output variable. The primary function of pooling is dimension reduction and 

some degree of shift invariance (LeCun et al. 1998). Average pooling calculates the average on the 

previous layer. The full connections can be regarded as a classification task that links the last layer before 

full connection with the output variable. 

 

Figure A12. Structure of Text-based CNN 

 

 

Convolution: feature extraction. A 13 weight matrix, “filter,” multiplies with each segment of the 

previous layer, and the dot product becomes an element on the next layer. Different filters capture 

different information from the previous layer. 

ReLu: non-linear transformation, which turns all negative values on the previous layer to zero. 

Max pooling: subsampling method. A 12 window glides over the previous layer, and only the max 

value of each window is kept as an element on the next layer. 

 

We employ a multitasking structure. As suggested by the deep learning literature (see Ruder 

(2017) for a review), multitasking can increase the accuracy of a deep learning model intuitively because 

the information cross tasks may be complementary. A multitasking model structure is also more efficient 

than a single-task structure. In our context, for each review, there are eight tasks to predict: whether a 

review mentions food, service, environment, and price; whether the sentiment for food, service, 

environment, and price is positive or negative. Under a single task text-based CNN, we would train eight 

separate deep learning models. With a multitasking structure, we only need to train one deep learning 

model. To implement the multitask CNN, we link the layer after global average pooling with a separate 

full connection for each task, generating a score for each task.  

For tasks that aim to identify whether the review mentions one or more dimensions of restaurant 

quality, the label 𝑠𝑟
𝑘=1 if review 𝑟 mentions the quality dimension for task 𝑘, 𝑠𝑟

𝑘=0 if review 𝑟 does not 

mention the quality dimension for task 𝑘, with 𝑘 = 1, 2, 3, 4;  𝑟 = 1, 2, 3, … ,8000. For the other four tasks 

𝑘 = 5, 6, 7, 8 that label sentiment of each quality dimension, only reviews that mention a quality 

dimension are kept for the respective sentiment task. For sentiment of each quality dimension, we follow 

the conventional procedure as in Liu et al. (2019), Zhang et al. (2018), and Zhang et al. (2015) and 
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convert the 7-point Likert scale sentiment to binary levels to mitigate potential noises in the data. In 

particular, a sentiment label is defined as positive (𝑠𝑟
𝑘 = 1)  if it receives a rating above 4; negative (𝑠𝑟

𝑘 =
0) if a rating is less than 4; and is disregarded if its rating equals 4. 

The loss function is defined in Equation (A1), which is the sum of loss for the eight tasks 

altogether, with 𝑠𝑟
𝑘̂  being the predicted probability that 𝑠𝑟

𝑘 = 1. The specification is called “cross-entropy” 

in computer science literature, which is equivalent to negative log-likelihood. 

(A1)  

𝐿𝑜𝑠𝑠 = − ∑ ∑ [𝑠𝑟
𝑘 ln (𝑠𝑟

𝑘̂) + (1 − 𝑠𝑟
𝑘) ln (1 − 𝑠𝑟

𝑘̂)]

8

𝑘=1

8000

𝑟=1

 

We randomly split the 10,000 reviews into 80% for calibration and 20% for out-of-sample 

testing. In the calibration process, the text of each review is treated as model inputs, and the outputs are 

the eight quality dimension scores labeled by the Mturk survey. Parameters are optimized using a 

stochastic gradient descent method by minimizing the above loss function. We validate the calibrated 

text-based CNN on the holdout dataset. Our text-based CNN yields good AUC scores for all the eight 

tasks on the holdout dataset, as shown in Table A7.  

We then extrapolate the calibrated CNN to extract eight quality dimension scores for all reviews 

in our entire dataset of 1,121,069 reviews. Each review went through layers of the text-based CNN with 

review text and calibrated parameters as inputs and eight numerical scores between 0 and 1 representing 

mentioning and sentiments of the four restaurant quality dimensions as outputs. The distribution of the 

extracted quality scores is shown in Table A8. The calibration and extrapolation of the text-based CNN 

were implemented using Tensorflow, a deep learning library within Python. 

 

Table A7. Out-of-Sample Testing Performance of the Text-based CNN 
 AUC Valid samples for testing 

Mention   

Food 0.9187 1990 

Service 0.9163 1986 

Environment 0.8814 1980 

Price 0.9449 1993 

Sentiment   

Food 0.9515 1721 

Service 0.9627 1325 

Environment 0.8841 781 

Price 0.9139 552 

 

Table A8. Summary Statistics of Restaurant Quality Dimension Scores  
Count Mean Standard deviation Minimum Maximum 

Mention      

Food 1,121,069 0.9714 0.1667 0 1 

Service 1,121,069 0.9998 0.0141 0 1 

Environment 1,121,069 0.4043 0.4908 0 1 

Price 1,121,069 0.2570 0.4370 0 1 

Sentiment      

Food 1,089,039 0.7726 0.3903 0 1 

Service 1,120,880 0.7249 0.4025 0 1 

Environment 453,203 0.8311 0.3384 0 1 

Price 288,070 0.6017 0.4512 0 1 
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Topic Modeling of Reviews  

 For the topic modeling of reviews, we also calibrate a Latent Dirichlet allocation (LDA) (Blei et 

al. 2003) model to summarize the reviews' content. We use the same procedure of topic modeling on 

photos for reviews. We randomly sample 10,000 reviews to calibrate the LDA model, with 80% for 

training and 20% for testing. We implement the LDA model using a Python library “GENSIM” (Rehurek 

and Sojka 2010), a widely used Python library for topic modeling.  

 We use the online variational inference algorithm for the LDA training (Hoffman et al. 2010). We 

use all the 5,330 words3 that appeared in more than 0.05% of reviews. Removing rare words reduces the 

risk that the results are influenced by outlier words (Netzer et al. 2019; Tirunillai and Tellis 2014). We 

run the model with 2 to 40 topics on the training dataset and find that the fitted LDA yields the highest 

topic coherence score (Röder et al. 2015) on the testing dataset when the number of topics is equal to 20. 

Table A9 presents the 20 topics and the most representative words for each topic based on the relevance 

score calculated using 𝜆 = 0.5 (Sievert and Shirley 2014). Intuitively, the representative words for a topic 

tend to appear together (Tirunillai and Tellis 2014). 

 

Table A9. The 20 LDA Topics and Representative Words with Highest Relevance 

(Topics are listed in an arbitrary order) 

ID Topic name Representative words with highest relevance 

1 Indian Food Indian, naan, masala, tikka, paneer, mais, frites, tater, tot, meatloaf 

2 Mixed/negative reviews 

on food 

Sauce, chicken, flavor, salad, cheese, shrimp, steak, taste, didnt, wasnt  

3 Japanese food Sushi, roll, fish, Japanese, tuna, tofu, tempura, sashimi, spicy, chef 

4 Breakfast and Brunch Dog, toast, brunch, hot, juice, omelette, fresh, scramble, local, french 

5 Satisfaction Great, food, service, excellent, friendly, good, recommend, staff, highly, love 

6 Love for a place Best, place, ever, food, love, try, eat, phoenix, town, always 

7 Happy hour and price Happy, hour, slider, discount, alcohol, Monday, free, drink, fondue, price 

8 Italian food Bread, tomato, garlic, mozzarella, feta, meatball, Italian, crust, marinara, pasta 

9 Buffet Buffet, Vega, pasta, wine, squid, seafood, station, tray, din, selection 

10 Breakfast Coffee, breakfast, egg, pancake, waffle, biscuit, bacon, omelet, morning, benedict 

11 Dissatisfaction Floor, response, horrible, needless, boring, crew, host, havent, bore, service 

12 Mexican food Chip, Mexican, salsa, enchilada, tapa, band, tortilla, fajitas, queso, guacamole 

13 Sandwich Sandwich, beef, pork, turkey, bbq, chicken, sub, roast, meat, lettuce 

14 Dessert Dessert, pie, cake, chocolate, appetizer, creme, cheesecake, peanut, course, cream 
15 General service Order, ask, get, take, minute, say, wait, come, didnt, table 

16 Fast food Burger, shake, fry, pizza, bun, hamburger, topping, Grimaldis, smash, gourmet 

17 Bar  Beer, bar, game, watch, night, bartender, selection, sport, tap, place 

18 Asian food Thai, noodle, pho, curry, Chinese, ramen, rice, bowl, pad, Vietnamese 

19 Specific service Kid, time, wait, long, service, issue, table, hostess, waiter, refill 

20 Special event Birthday, venue, football, reward, gift, private, cater, celebrate, sing, thanksgiving 

 

In the extrapolation step, we apply the calibrated LDA parameters to extract topic distribution for 

each review in our entire data set of reviews. A 20-dimensional topic distribution vector is generated for 

each review. Each dimension represents the empirical percentage of words assigned to a topic, with all 

percentages summing up to 1. For example, the topic distribution for one word could be [2.5%, 2.5%, 

 
3 For word preprocessing, we implemented the following procedures following Tirunillai and Tellis (2014): 1) 

remove punctuations (i.e., keep only words, numbers, space); 2) change capitalized characters to lower case; 3) 

tokenize words (i.e., a sentence to list of words); 4) implement part of speech tagging and keep only nouns, verbs, 

adjectives, adverbs; 5) lemmatize words (e.g., “booths” to “booth”, help us to normalize words); and 6) remove stop 

words. 
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7.5%, 7.5 %, 5%, 5%, 0%, 0 %, 10%, 10%, 2.5%, 2.5%, 7.5%, 7.5 %, 5%, 5%, 0%, 0 %, 10%, 10%]. We 

then use the average topic distribution for reviews for each restaurant-year as inputs for our predictive 

model. 

 

Variety of Objects in Reviews 

 To measure the variety of objects in a review, we count the number of unique nouns in a review. 

All reviews in our dataset contain 30,927 unique nouns. All nouns are lemmatized to ensure they have the 

same format. E.g., “apples” are lemmatized as “apple”, so “apples” and “apple” are treated as the same 

noun. We also remove stop words, words with fewer than two characters, and words that appear in less 

than 0.001% of reviews. 

 

Top 100 Nouns 

 As a robustness check for using topic modeling, we use an alternative way to summarize specific 

content in reviews. While all reviews in our dataset contain 30,927 unique nouns, the vast majority of 

nouns appear in only a few reviews. Hence, we use the top 100 nouns (encompassing all nouns with more 

than 5% frequency in our review dataset) to capture the specific content in reviews. 

Table A10. Top 100 Nouns in Reviews 
food friend plate option manager 

place star soup check water 

time dinner beef husband room 

service experience portion family fan 

restaurant fry quality work crab 

order flavor potato town fun 

chicken day egg choice bbq 

menu taste visit chip group 

table meat waitress coffee party 

pizza hour buffet cream end 

drink beer shrimp house piece 

sauce sushi wine line chocolate 

price review feel couple tomato 

salad roll pork guy tea 

burger location customer thai style 

bar bread home strip size 

lunch breakfast selection course decor 

night rice spot wife pasta 

staff area appetizer week name 

people taco item owner glass 
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Appendix D. Restaurant Survival Predictive Model: Gradient Boosted Trees 

Technical Details  

 We follow Chen and Guestrin (2016) to carry out our restaurant survival predictive model using 

XGBoost algorithm. We provide additional technical details of our predictive model in this appendix.  

 The regularization term Ω(𝜃) in Equation (1) of the paper aims to prevent overfitting. We 

carefully tune the hyper-parameters (e.g., 𝛾 and 𝜆 in Ω(𝜃)) before calibrating XGBoost, as described 

below. Following the convention of hyper-parameter tuning of XGBoost, we tune the hyper-parameters 

sequentially as follows.4 Table A11 lists the hyper-parameters that we tuned as well as the values that we 

tried.  

 

Table A11 Hyper-parameters for Tuning 

Hyper-

parameters 
Definitions Values tried  

max_depth 
The maximum depth of a tree. Increasing this value will 

make the model more complex and more likely to overfit.  
[3,4,5,6] 

min_child_weight 
The minimum number of nodes in a leaf. Increase this value 

may reduce overfitting. 
[1,2] 

colsample_bytree 
The fraction of features to use when building each tree. A 

lower value might reduce overfitting. 
[0.6,0.8,1] 

subsample 
The fraction of observations to subsample at each step for 

building a tree. A lower value might reduce overfitting. 
[0.6,0.8,1] 

𝛾 Penalize more leaves. A higher value might reduce overfit. [0,4,8] 

𝜆 
Regularization term on weights. Increasing this value will 

make a model more conservative. 
[0,1,2] 

𝜂 
Learning rate. Step size shrinkage used in updating to prevent 

overfitting 
[0.05,0.1,0.3,0.5] 

  

Ninety percent of restaurants are randomly chosen to tune the hyper-parameters. We further 

randomly split the restaurants with 80% for training and 20% for validation. We first find the best 

combination of max_depth and min_child_weight, among the 4*2 =8 combinations, as shown in the last 

column of Table A11, using a grid search. Given the best combination of max_depth and 

min_child_weight, we then pick the best values among the nine combinations of colsample_bytree and 

subsample. Then, given the best combination of max_depth, min_child_weight, colsample_bytree, and 

subsample, we choose the best values among the nine combinations of 𝛾 and 𝜆. Finally, given the best 

combination of the six tuned hyper-parameters, we choose best 𝜂 among the four values. Then we end up 

with the following values for the hyper-parameters in our XGBoost model: max_depth =4, 

min_child_weight=2, colsample_bytree=1, subsample=1, 𝛾 = 4, 𝜆 = 2, and 𝜂 = 0.1. Additionally, we 

learn empirically that the model converges within 100 trees. Therefore, we choose the number of trees to 

be 100 in our XGBoost model. 
 

 We provide details below for the model evaluation metrics used in Tables 5-6 in Section 3.2 of 

the paper. ROC curve is a graphical plot that illustrates the diagnostic ability of a binary classifier (Hanley 

and McNeil 1982). False positive rate is on the horizontal axis. False positive rate =1-specificity=
# 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

# 𝑜𝑓  𝑟𝑒𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
. True positive rate is on the vertical axis. True positive rate = 

recall=sensitivity=
# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

# 𝑜𝑓  𝑟𝑒𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
. Given a false positive rate on the horizontal axis, the higher 

the true positive rate, the better. KL divergence =−
1

𝑁
∑ [𝑦𝑖𝑡 ln 𝑦𝑖𝑡̂ + (1 − 𝑦𝑖𝑡)ln (1 − 𝑦𝑖𝑡̂)]𝑖𝑡 , which is 

 
4 https://blog.cambridgespark.com/hyperparameter-tuning-in-xgboost-4ff9100a3b2f  

https://blog.cambridgespark.com/hyperparameter-tuning-in-xgboost-4ff9100a3b2f
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equivalent to negative log-likelihood. Pseudo R2 = 1 −
𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑛𝑢𝑙𝑙
. We reweight the data for 

sensitivity, specificity, and balanced accuracy, based on the discussion about the parameter 

“scale_pos_weight” on https://xgboost.readthedocs.io/en/latest/parameter.html and “handle imbalanced 

dataset” on https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.html.  

 

Comparisons with Other Predictive Algorithms  

 We compare the XGBoost algorithm used in the paper with two alternative predictive algorithms: 

random forests and SVM (see Table A12). We also tried Lasso, hazard model, and OLS in our 

comparisons, which are omitted from Table A12 because their predictive performance was considerably 

worse than the three models presented. For random forests, we train an ensemble of 100 trees, the same as 

the number of trees in our XGBoost model. For SVM, we use L1 regularization and square of the hinge 

loss. We implement both random forests and SVM algorithms in Python. We then calculate means and 

standard deviations of prediction performance measured by AUC across years 2010-2015 and cross-

validation iterations. For each photo or review related variable, we use the same main model specification 

as in the paper, namely OnePeriodt-1+Cumt-1. Table A12 shows that XGBoost dominates random forests 

and SVM in our context. It is not surprising because XGBoost is very flexible in handling potentially 

high-order interactions among predictors (Friedman 2001) and can process sparse data efficiently (Chen 

and Guestrin 2016). 

 

Table A12 Out-of-Sample Time Periods and Restaurants Prediction Performance (AUC) of 

Different Predictive Algorithms 

  XGBoost Random forests SVM 

Baseline 
0.7020 a 0.6596 0.6904 

(0.0047) (0.0048) (0.0054) 

Baseline + review 
0.7152 a 0.6607 0.7007 

(0.0048) (0.0047) (0.0053) 

Baseline + photo 
0.7612 a 0.7005 0.7329 

(0.0066) (0.0061) (0.0068) 

Baseline + review + photo 
0.7660 a 0.7081 0.7371 

(0.0065) (0.0065) (0.0072) 

Total obs. 89,384 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in 

parentheses  
a Best in the row or not significantly different from best in the row at the 0.05 level with a 2-sided test. 

 

 

https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.html


 22 

 

Yearly Results for the Main Prediction (Corresponding to Table 5) 

  

Recall that we predict survival for out-of-sample restaurants in out-of-sample time periods in the main prediction of the paper. Table 5 shows the 

results aggregated by years and cross-validation iterations. Here Table A13 breaks down the prediction performance (AUC) by year. To calculate 

more accurate standard errors for each year, we employ 20-fold cross validation for each year here. We observe the pattern is consistent over the 

years in general. 

 

Table A13 Yearly Out-of-Sample Time Periods and Restaurants Prediction Performance (AUC) 
 2010 2011 2012 2013 2014 2015 

Baseline (i.e., no UGC) 
0.7217 0.7158 0.7103 0.6945 0.6946 0.6660 

(0.0143) (0.0118) (0.0076) (0.0093) (0.0105) (0.0065) 

Baseline + review 
0.7306 0.7255 0.7305 0.7119 0.7197 a 0.6702 a 

(0.0135) (0.0102) (0.0062) (0.0092) (0.0104) (0.0072) 

Baseline + photo 
0.7837 a 0.8019 a 0.7882 a 0.7609 a 0.7306 a 0.6847 a 

(0.0105) (0.0092) (0.0056) (0.0075) (0.0082) (0.0105) 

Baseline + review + photo 
0.7898 a 0.8063 a 0.7943 a 0.7742 a 0.7414 a 0.6909 a 

(0.0103) (0.0081) (0.0073) (0.0074) (0.0095) (0.0098) 

Total obs. 26930 37745 49607 62299 75627 89384 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions.  

Results are averaged over cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test. 
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Robustness Check #1: Alternative Specifications for One-period and Cumulative Variables of Photos and Reviews 

Tables A14 to A16 provide the predictive results based on three alternative variable specifications. It is worth noting that, while our main 

variable specification includes all restaurant observations (with the total number of observations being 89,384), these alternative variable 

specifications have fewer observations due to the inclusion of multi-year lags (i.e., OnePeriodt-2, Cumt-2, Cumt-3, Changet-1) in such specifications. 

Overall, our main variable specification has better or similar predictive performance compared to these alternative specifications. The incremental 

predictive power of photos is robust across these alternative modeling specifications.  

 

Table A14 Out-of-Sample Time Periods and Restaurants Prediction Performance of Alternative Specification #1:  

OnePeriodt-1+Cumt-2 

  Out of sample In sample 

AUC KL divergence Sensitivity Specificity Balanced accuracy Pseudo R2 

Baseline 
0.6984 0.2001 0.7208 0.5402 0.6305 0.1344 

(0.0043) (0.0041) (0.0053) (0.0109) (0.0047) (0.0025) 

Baseline + review 
0.7135 0.1981 0.7993 a 0.4595 0.6294 0.2287 

(0.0046) (0.0042) (0.0048) (0.0106) (0.0045) (0.0073) 

Baseline + photo 
0.7606 a 0.1903 a 0.7308 0.6210 a 0.6759 a 0.2495 

(0.0065) (0.0033) (0.0085) (0.0125) (0.0061) (0.0033) 

Baseline + review + photo 
0.7662 a 0.1880 a 0.7629 0.6105 a 0.6867 a 0.2894 a 

(0.0063) (0.0034) (0.0082) (0.0135) (0.0060) (0.0059) 

Total obs.    71,665  

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced 

accuracy, the training data are reweighted so that the total weights of surviving and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test.  
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Table A15 Out-of-Sample Time Periods and Restaurants Prediction Performance of Alternative Specification #2:  

OnePeriodt-1+OnePeriodt-2+Cumt-3 

  Out of sample In sample 

AUC KL divergence Sensitivity Specificity Balanced accuracy Pseudo R2 

Baseline 
0.6736 0.1903 0.7721 0.4314 0.6017 0.1366 

(0.0054) (0.0045) (0.0087) (0.0137) (0.0052) (0.0037) 

Baseline + review 
0.6933 0.1888 0.8650 a 0.3207 0.5928 0.3109 

(0.0044) (0.0047) (0.0068) (0.0139) (0.0048) (0.0126) 

Baseline + photo 
0.7465 a 0.1819 b 0.7676 0.5418 a 0.6547 a 0.2896 

(0.0071) (0.0036) (0.0109) (0.0186) (0.0067) (0.0053) 

Baseline + review + photo 
0.7484 a 0.1806 b 0.8204 0.4679  0.6442 a 0.3592 a 

(0.0067) (0.0039) (0.0104) (0.0204) (0.0070) (0.0105) 

Total obs.    55,669  

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced accuracy, the 

training data are reweighted so that the total weights of surviving and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test.  
b Best in the column or not significantly different from best in the column at the 0.10 level with a 2-sided test. 
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Table A16 Out-of-Sample Time Periods and Restaurants Prediction Performance of Alternative Specification #3:  

OnePeriodt-1+Cumt-1+Changet-1 

  Out of sample In sample 

AUC KL divergence Sensitivity Specificity Balanced accuracy Pseudo R2 

Baseline 
0.6972 0.2005 0.7433 0.5131 0.6282 0.1438 

(0.0044) (0.0041) (0.0056) (0.0091) (0.0044) (0.0029) 

Baseline + review 
0.7152 0.1987 0.8171 a 0.4454 0.6312 0.2518 

(0.0044) (0.0043) (0.0050) (0.0110) (0.0043) (0.0084) 

Baseline + photo 
0.7683 a 0.1891 a 0.7395 0.6331 a 0.6863 a 0.2669 

(0.0066) (0.0031) (0.0089) (0.0112) (0.0056) (0.0036) 

Baseline + review + photo 
0.7788 a 0.1863 a 0.7737 0.5991 0.6864 a 0.3149 a 

(0.0065) (0.0034) (0.0085) (0.0124) (0.0057) (0.0063) 

Total obs.    71,665  

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced accuracy, the 

training data are reweighted so that the total weights of surviving and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test.  
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Robustness Check #2: Robustness Check for Photo and Review Content Measures  

 As a robustness check for photo and review content measures, we use content labels to capture photo and review content to carry out the 

comparisons in Table A17. Specifically, for photos, we replace “prop. of photos on each of the 10 LDA topics” in Table 4A in the paper with 

“prop. of photos containing each of the top 100 Clarifai objects” listed in Table A1. For reviews, we replace “prop. of reviews on each of the 20 

LDA topics” in Table 4A with “prop. of reviews containing each of the top 100 nouns” listed in Table A10. Table A17 below provides a 

robustness check for Table 5. The results are qualitatively similar as the ones presented in the paper. 

 

Table A17. Out-of-Sample Time Periods and Restaurants Performance of Prediction Using Content Labels on Photo and Review Content 

 Out of sample In sample 

AUC KL divergence Sensitivity Specificity Balanced accuracy Pseudo R2 

Baseline (i.e., no UGC) 
0.7020 0.1973 0.6484 0.6284 0.6384 0.1373 

(0.0047) (0.0035) (0.0056) (0.0092) (0.0046) (0.0026) 

Baseline + review 
0.7190 0.1948 0.7342 a 0.5487 0.6415 0.2198 

(0.0046) (0.0035) (0.0045) (0.0092) (0.0040) (0.0060) 

Baseline + photo 
0.7623 a 0.1878 a 0.6759 0.6936 a 0.6848 a 0.2358 

(0.0064) (0.0028) (0.0086) (0.0094) (0.0052) (0.0027) 

Baseline + review + photo 
0.7708 a 0.1850 a 0.7103 0.6745 a 0.6924 a 0.2752 a 

(0.0061) (0.0028) (0.0074) (0.0093) (0.0050) (0.0042) 
Total obs. 89384 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced 

accuracy, the training data are reweighted so that the total weights of surviving and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test.  
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Robustness Check #3: Prediction Survival Using Only Restaurants with Accurate Age Information 

Table A18 is based on one-year-ahead predictions using the 10,368 restaurants with accurate age information (i.e., the birthdate is 

identified via each restaurant’s Yelp/Facebook page, own website, or Google search engine, rather than approximated by the first review/photo 

date). The results are qualitatively the same as those in Table 5.  Table A19 breaks down the prediction performance (AUC) by year. To calculate 

more accurate standard errors for each year, we employ 20-fold cross validation for each year. Again, we observe that the pattern is consistent over 

the years in general. 

 

Table A18 Out-of-Sample Time Periods and Restaurants Performance of Prediction Using Restaurants with Accurate Age Information 

 Out of sample In sample 
 AUC KL divergence Sensitivity Specificity Balanced accuracy Pseudo R2 

Baseline (i.e., no UGC) 
0.6450 0.1331 0.6568 0.4868 0.5718 0.1140 

(0.0089) (0.0037) (0.0128) (0.0219) (0.0073) (0.0009) 

Baseline + review 
0.6669 0.1330 0.7911 a 0.3801 0.5856 0.2743 

(0.0078) (0.0037) (0.0128) (0.0243) (0.0074) (0.0066) 

Baseline + photo 
0.7379 a 0.1266 0.7345 0.5180 0.6263 a 0.2651 

(0.0083) (0.0034) (0.0122) (0.0213) (0.0087) (0.0040) 

Baseline + review + photo 
0.7404 a 0.1263 0.7785 a 0.5023 0.6404 a 0.3338 a 

(0.0082) (0.0033) (0.0148) (0.0265) (0.0096) (0.0042) 

Total obs. 56391 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced 

accuracy, the training data are reweighted so that the total weights of surviving and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test. 
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Table A19 Yearly Out-of-Sample Time Periods and Restaurants Performance (AUC) of Prediction Using Restaurants with Accurate Age 

Information  

 
 2010 2011 2012 2013 2014 2015 

Baseline (i.e., no UGC) 
0.5802 0.6359 0.6851 0.6696 0.6478 0.6371 

(0.0329) (0.0197) (0.0179) (0.0135) (0.0233) (0.0173) 

Baseline + review 
0.6168 0.6604 0.6703 0.6801 0.6611 a 0.6627 a 

(0.0220) (0.0183) (0.0226) (0.0158) (0.0183) (0.0173) 

Baseline + photo 
0.7355 a 0.7820 a 0.7862 a 0.7408 a 0.7004 a 0.6862 a 

(0.0234) (0.0136) (0.0153) (0.0185) (0.0173) (0.0138) 

Baseline + review + photo 
0.7492 a 0.7808 a 0.7764 a 0.7484 a 0.7077 a 0.6897 a 

(0.0199) (0.01580) (0.0169) (0.0160) (0.0180) (0.0168) 

Total obs. 16045 22846 30413 38651 47347 56391 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions.  

Results are averaged over cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test. 
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Robustness Check #4: Prediction without Period 0 

Table A20 is based on one-year-ahead predictions without period 0. As such, the 1,723 restaurants with only one period observation in our 

data are dropped from the analysis. The results are qualitatively the same as those in Table 5. Table A21 breaks down the prediction performance 

(AUC) by year. To calculate more accurate standard errors for each year, we employ 20-fold cross validation for each year. Again, we observe that 

the pattern is consistent over the years in general. 

 

 

Table A20 Out-of-Sample Time Periods and Restaurants Performance of Prediction Without Period 0  

 Out of sample In sample 
 AUC KL divergence Sensitivity Specificity Balanced accuracy Pseudo R2 

Baseline (i.e., no UGC) 
0.6973 0.2001 0.7247 0.5355 0.6301 0.1344 

(0.0051) (0.0042) (0.0049) (0.0091) (0.0046) (0.0026) 

Baseline + review 
0.7159 0.1977 0.8036 a 0.4636 0.6336 0.2397 

(0.0045) (0.0042) (0.0053) (0.0106) (0.0047) (0.0086) 

Baseline + photo 
0.7667 a 0.1888 a 0.7310 0.6377 a 0.6843 a 0.2608 

(0.0064) (0.0032) (0.0089) (0.0101) (0.0052) (0.0033) 

Baseline + review + photo 
0.7746 a 0.1864 a 0.7628 0.6088 0.6858 a 0.3077 a 

(0.0062) (0.0033) (0.0087) (0.0102) (0.0056) (0.0063) 

Total obs. 71665 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced 

accuracy, the training data are reweighted so that the total weights of surviving and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test. 
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Table A21 Yearly Out-of-Sample Time Periods and Restaurants Prediction Performance (AUC) of Prediction Without Period 0  
2010 2011 2012 2013 2014 2015 

Baseline (i.e., no UGC) 
0.6926 0.7123 0.7078 0.6930 0.6905 0.6767 

(0.0183) (0.0126) (0.0104) (0.0104) (0.0120) (0.0071) 

Baseline + review 
0.7097 0.7273 0.7381 0.7198 0.7246 a 0.6901 a 

(0.0145) (0.0116) (0.0074) (0.0118) (0.0124) (0.0063) 

Baseline + photo 
0.7861 a 0.8094 a 0.7993 a 0.7718 a 0.7375 a 0.6972 a 

(0.0123) (0.0082) (0.0067) (0.0093) (0.0102) (0.0099) 

Baseline + review + photo 
0.7875 a 0.8159 a 0.8083 a 0.7866 a 0.7508 a 0.6992 a 

(0.0121) (0.0081) (0.0080) (0.0093) (0.0111) (0.0092) 
Total obs. 16882 25724 35867 47042 58991 71665 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions.  

Results are averaged over cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test. 
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Robustness Check #5: Predicting Out-of-Sample Time Periods (No Cross-Validation between Restaurants) 

In the main paper we predict survival in out-of-sample time periods for out-of-sample restaurants. As a robustness check, here we carry 

out an alternative forecasting scenario by using data up to period t -1 to predict the survival of all open restaurants in period t, which is likely to be 

one application of our algorithm in practice. Table A22 – A24 present the results. The results are qualitatively the same as those in the paper. 

 

Table A22 Out-of-Sample Time Periods Prediction Performance 
 Out of sample In sample   

AUC Pseudo R2 Sensitivity Specificity Balanced accuracy Pseudo R2  

Baseline (i.e., no UGC) 0.7010 0.1973 0.6455 0.6272 0.6364 0.1370  
 (0.0080) (0.0077) (0.0159) (0.0083) (0.0047) (0.0088)  

Baseline + review 0.7165 0.1951 0.7244 a 0.5648 0.6446 0.2031  
 (0.0084) (0.0076) (0.0141) (0.0166) (0.0054) (0.0185)  

Baseline + photo 0.7595 a 0.1880 0.6712 a 0.7027 a 0.6870 a 0.2286  
 (0.0161) (0.0043) (0.0262) (0.0119) (0.0103) (0.0089)  

Baseline + review + photo 0.7672 a 0.1854 0.7017 a 0.6768 a 0.6892 a 0.2598 a  
 (0.0164) (0.0044) (0.0238) (0.0145) (0.0103) (0.0133)  

Total obs. 89384 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced 

accuracy, the training data are reweighted so that the total weights of open and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test.  

 

Table A23 Yearly Out-of-Sample Time Periods Prediction Performance (AUC)   
2010 2011 2012 2013 2014 2015 

Baseline (i.e., no UGC) 0.7286 0.7161 0.7104 0.6901 0.6914 0.6696 

Baseline + review 0.7378 0.7255 0.7299 0.7121 0.7197 0.6739 

Baseline + photo 0.7875 0.8029 0.7854 0.7622 0.7325 0.6867 

Baseline + review + photo 0.7953 0.8091 0.7908 0.7729 0.7463 0.6890 

Total obs. 26930 37745 49607 62299 75627 89384 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions.  

Because there is no cross validation among restaurants, standard errors for each year are not available. 
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Table A24 Out-of-Sample Time Periods Prediction Performance – Different Aspects of Photos 
   Out of sample   In sample 

 AUC KL divergence Sensitivity Specificity Balanced Accuracy Pseudo R2 

Baseline 
0.7010 0.1973 0.6455 0.6272 0.6364 0.1370 

(0.0080) (0.0077) (0.0159) (0.0083) (0.0047) (0.0088) 

Baseline + photographic attributes 
0.6996 0.1973 0.6908 a 0.5772 0.6340 0.1702 

(0.0070) (0.0078) (0.0174) (0.0145) (0.0028) (0.0118) 

Baseline + photo caption 
0.7018 0.1970 0.6668 a 0.6119 0.6393 0.1453 

(0.0082) (0.0076) (0.0140) (0.0077) (0.0053) (0.0091) 

Baseline + photo volume 
0.7034 0.1968 0.6588 a 0.6170 0.6379 0.1381 

(0.0074) (0.0078) (0.0147) (0.0139) (0.0030) (0.0077) 

Baseline + helpful votes 
0.7171 a 0.1960 0.6542 a 0.6427 0.6485 0.1646 

(0.0068) (0.0073) (0.0304) (0.0243) (0.0038) (0.0107) 

Baseline + photo content 
0.7525 a 0.1876 0.6672 a 0.6957 a 0.6815 a 0.2013 a 

(0.0203) (0.0044) (0.0184) (0.0126) (0.0153) (0.0070) 

Total obs. 89384 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced 

accuracy, the training data are reweighted so that the total weights of surviving and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test. 
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Robustness Check #6: Prediction without Age 0 Restaurant-Year Observations 

Although all restaurants don’t have UGC in period zero, such zero UGC can have different meanings for new and existing restaurants. For 

example, restaurant A was founded in 2010 (restaurant A’s period 1), and thus it was not eligible to receive any UGC in 2009 (age = 0 in 

restaurant A’s period 0). Differently, restaurant B was founded in 2008, but it received its first review in 2010 (restaurant B’s period 1) because it 

did not receive any UGC in 2009 (age = 2 in restaurant B’s period 0). In such cases, while both restaurants have zero UGC in period 0, the reasons 

are different. Hence, we conduct another robustness check by dropping observations with age = 0. In such cases, restaurant A’s age = 0 in period 0 

observation is dropped because it cannot receive UGC in period 0. But restaurant B’s age = 2 in period 0 observation remains because zero UGC is 

meaningful to be accounted for in such cases. Table A25 presents the results which are qualitatively the same as those in Table 5.  

Figure A13 presents the top 35 predictors of restaurant survival in one-year-ahead prediction without age 0. The top predictors are similar 

to those Figure 4 of the paper in general. In particular, Figure A13 shows that the eight photo-related variables among the top 35 predictors are the 

same as those in Figure 4 of the paper. Again, the most predictive photos variables, % of food photos and % of outside photos, are related to photo 

content. The variable, average yearly helpful votes for photos, is also very predictive of restaurant survival. Moreover, after dropping observations 

with age=0, the SHAP feature importance values increase for these top photo variables overall. This is intuitive. For example, the SHAP feature 

importance of % food photos increases from 0.213 (Figure 4 of the paper) to 0.248 (Figure A13). 

 

Table A25 Out-of-Sample Time Periods and Restaurants Performance of Prediction Without Age 0  

 Out of sample In sample 
 AUC KL divergence Sensitivity Specificity Balanced accuracy Pseudo R2 

Baseline (i.e., no UGC) 
0.7070 0.1908 0.6828 0.5977 0.6403 0.1513 

(0.0054) (0.0036) (0.0062) (0.0100) (0.0050) (0.0031) 

Baseline + review 
0.7244 0.1884 0.7658 a 0.5295 0.6476 0.2456 

(0.0050) (0.0035) (0.0057) (0.0101) (0.0047) (0.0078) 

Baseline + photo 
0.7712 a 0.1809 a 0.7136 0.6678 a 0.6907 a 0.2692 

(0.0068) (0.0027) (0.0099) (0.0098) (0.0053) (0.0038) 

Baseline + review + photo 
0.7801 a 0.1778 a 0.7418 0.6552 a 0.6985 a 0.3129 a 

(0.0067) (0.0027) (0.0088) (0.0105) (0.0063) (0.0060) 
Total obs. 80390 

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced 

accuracy, the training data are reweighted so that the total weights of surviving and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test. 
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Figure A13. Top 35 Predictors of Restaurant Survival in One-Year-Ahead Prediction without Age 0  

 
 

Importance weights are based on predicting survival in 2015.  

Within each type of factors (e.g., photo), variables are ordered by their predictive power.
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Robustness Check #7: Prediction with 𝒅𝒖𝒎𝒎𝒚𝒑𝒓𝒆𝟐𝟎𝟎𝟒 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝑼𝑮𝑪 

The first photo/review on Yelp is truncated in year 2004. As such, when birthdate = 2004 is inferred from the year of the first 

photo/review on Yelp, such age information might be less accurate. Hence, we add a dummy (1 when birthyear=2004 based on UGC, 0 otherwise) 

as an additional variable in the model as a robustness check. We observe that only eight restaurants started in 2004 in the entire sample. Among 

these, four restaurants have their birthdates inferred from Yelp reviews or photos. And these four restaurants only have 36 restaurant-year 

observations in total. Table A26 below presents the results of the robustness check. The results here are qualitatively consistent with to those in 

Table 5 of the paper. 

 

Table A26 Out-of-Sample Time Periods and Restaurants Performance of Prediction With 𝒅𝒖𝒎𝒎𝒚𝒑𝒓𝒆𝟐𝟎𝟎𝟒 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝑼𝑮𝑪 

 Out of sample In sample 
 AUC KL divergence Sensitivity Specificity Balanced accuracy Pseudo R2 

Baseline (i.e., no UGC) 
0.6991 0.1975 0.6496 0.6321 0.6408 0.1376 

(0.0048) (0.0037) (0.0061) (0.0097) (0.0045) (0.0026) 

Baseline + review 
0.7144 0.1956 0.7274 a 0.5657 0.6465 0.2103 

(0.0046) (0.0036) (0.0056) (0.0099) (0.0046) (0.0063) 

Baseline + photo 
0.7583 a 0.1881 a 0.6740 0.6923 a 0.6831 a 0.2334 

(0.0065) (0.0029) (0.0090) (0.0090) (0.0051) (0.0029) 

Baseline + review + photo 
0.7657 a 0.1856 a 0.7032 0.6787 a 0.6910 a 0.2671 a 

(0.0063) (0.0029) (0.0081) (0.0089) (0.0053) (0.0047) 

Total obs.  

Baseline model includes restaurant characteristics, competitive landscape, and macro conditions. For sensitivity, specificity, and balanced 

accuracy, the training data are reweighted so that the total weights of surviving and closed observations are equal.  

Results are averaged over years and cross-validation iterations. Standard errors are provided in parentheses.  

Bold numbers indicate significant improvement over the baseline model at the 0.05 level with a 2-sided test. 
a Best in the column or not significantly different from best in the column at the 0.05 level with a 2-sided test. 
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Photos’ Predictive Power Broken Down by Each Age for Age <=5  

 Because the survival of younger restaurants is more volatile5, we take a closer look at photos’ 

predictive power by each age for age<=5 in Figure A13. We calculate the AUC increase from photos by 

examining the difference between 𝐴𝑈𝐶𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+ 𝑟𝑒𝑣𝑖𝑒𝑤 + 𝑝ℎ𝑜𝑡𝑜  and 𝐴𝑈𝐶𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+ 𝑟𝑒𝑣𝑖𝑒𝑤 for each age 

group, respectively.6 The figure shows that photos increase prediction accuracy for restaurants at each age 

younger than or equal five years old.  

Figure A14 Photo’s Prediction Power by Each Age (Age<=5) 

 

Robustness Checks for Multiple-Year Survival Prediction 

 We report results from three alternative specifications for multiple-year (∆𝑡) survival prediction 

as robustness checks below. We let ∆𝑡=1,2,3 years. Compared with the main specification in the paper 

where we predict survival during the future ∆𝑡 years (e.g., forecasting whether a restaurant would survive 

until the end of 2013), these alternative specifications break down the prediction for each year (e.g., 

predicting whether a restaurant would survive in 2011, 2012, or 2013). To make these specifications 

comparable with the main specification in the paper, we multiply the predicted survival probability for 

each future year to derive the predicted survival probability during the future ∆𝑡 years (e.g., 𝑦𝑖2010+3̃̂ =
 𝑦̂𝑖2011 ∗  𝑦̂𝑖2012 ∗ 𝑦̂𝑖2013). 

 Same for all the approaches below, for each ∆𝑡, we train separate models (baseline; baseline + 

review; baseline + photo; baseline + review + photo) with data till 𝑡 and 10-fold cross-validation. Then 

for each ∆𝑡, we report average performance across 𝑡 and cross-validation iterations.  

First specification We simply use 𝑿𝑖𝑡 to predict 𝑦𝑖𝑡+∆𝑡. For example, we use all information up 

till year 2010 to predict survival probability in year 2013, with no additional assumptions made.  

Second specification We predict 𝑦𝑖𝑡+∆𝑡, assuming 𝑥𝑖,𝑡+∆𝑡−1 = ⋯ = 𝑥𝑖,𝑡+1 = 𝑥𝑖𝑡 for all one-

period variables, with cumulative variables in future periods derived from the cumulative variables in the 

current period and the respective one-period variables in future periods. For example, we assume # of 

photosit (one-period) = # of photosit-1 (one-period). And # of photosit (cum.) = # of photosit-1 (cum.) + # of 

photosit (one-period).  

Third specification This specification is based on the distributed lag model (Mela et al. 1997). In 

this model, the dependent variable 𝑦𝑖𝑡+∆𝑡 is a function of 𝑿𝑖𝑡+∆𝑡−1 and lagged dependent variable 

𝑦𝑖𝑡+∆𝑡−1. We do not observe 𝑿𝑖𝑡+∆𝑡−1  and 𝑦𝑖𝑡+∆𝑡−1 in current year 𝑡, when ∆𝑡 > 1. Therefore, we use 

 
5The failure rates for the three groups (1<=age<=3; 3<age<=21; age>21) in Table 7 are 10%, 4%, and 2%, 

respectively. Please note that the failure rates are calculated at the restaurant-year level (instead of restaurant level) 

since restaurant age changes over the years. 

 
6 In Table 7, we train a separate model for each age bracket (young, mid-aged, established) to fully calibrate the 

model for each type of restaurants. Because each age in Figure A13 has a relatively small number of observations, 

we do not train a separate model for each age. Instead, we plot the AUC difference for each age separately, using the 

model trained on all ages. 
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𝑿𝑖𝑡 to predict 𝑦𝑖𝑡+1, use 𝑦𝑖𝑡+1̂ and 𝑿𝑖𝑡+1̂ to predict 𝑦𝑖𝑡+2, use 𝑦𝑖𝑡+2̂ and 𝑿𝑖𝑡+2̂ to predict 𝑦𝑖𝑡+3, with 𝑿𝑖𝑡+1̂ 

and 𝑿𝑖𝑡+2̂ derived in the same fashion as in the second specification above. 

Figures A14-A16 show that, under all these three alternative specifications, photos can predict 

three-year survival while reviews can only predict one-year survival. It is consistent with the pattern of 

main prediction in the paper. 

 

Figure A15 Multiple-Year Survival Prediction  

(First Specification) 

 
Baseline includes restaurant characteristics, competition landscape, and macro factors. 

Results are averaged over years and cross-validation iterations.  

The error bars represent  1 times the standard error of each point estimate. 

 



 38 

Figure A16 Multiple-Year Survival Prediction Assuming 𝒙𝒊,𝒕+𝟏 = 𝒙𝒊𝒕 for All One-Period Variables 

(Second Specification) 

 
Baseline includes restaurant characteristics, competition landscape, and macro factors. 

Results are averaged over years and cross-validation iterations.  

The error bars represent  1 times the standard error of each point estimate. 

 

Figure A17 Multiple-Year Survival Prediction Using Distributed Lag Model  

(Third Specification) 

 
Baseline includes restaurant characteristics, competition landscape, and macro factors. 

Results are averaged over years and cross-validation iterations.  

The error bars represent  1 times the standard error of each point estimate. 
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Appendix E. Cluster-Robust Causal Forests 

Figure A17 summarizes the estimation procedures of our causal forests. We provide more details for the 

estimation procedures below. 

Figure A18 Causal Forest Estimation Procedures 

 
𝒙 denotes a set of values of 𝑿𝑖𝑡−1. 

 

Consolidating Highly Correlated Variables  

 Before carrying out the causal forests estimation, we consolidate variables to reduce the 

correlations between treatments and controls as required by the overlap assumption (Wager and Athey 

2018). Table A25 presents the complete list of consolidated variables. When both cumulative and one-

period variables of the same measure (e.g., cum. and one-period avg. yearly helpful votes for photos) are 

among the top 35 most informative variables in Figure 4 of the main paper, we use cumulative rather than 

one-period lag variables because the former often times are more predictive of restaurant survival than the 

latter. When two variables carry similar meanings (e.g., prop. of photos with helpful votes, avg. yearly 

helpful votes for photos), we keep the one with higher SHAP feature importance from Figure 4 in the 

main paper. When the average and the standard deviation of the same measure are highly correlated (e.g., 

avg. and std. of yearly helpful votes for reviews), we keep the average for ease of interpretation. 
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Table A27 The List of Consolidated Variables  

Variables before consolidation Treatment variable used in causal forests 

# of photos (cum.) 

# of reviews (cum.) 
# of photos and reviews (cum.) 

Prop. of photos with helpful votes (cum.) 

Avg. yearly helpful votes for photos (cum.) 

Avg. yearly helpful votes for photos (one-period) 

Prop. of photos with helpful votes (cum.) 

 

Avg. yearly helpful votes for reviews (cum.) 

Std. of yearly helpful votes for reviews (cum.) 

Avg. yearly helpful votes for reviews (one-period) 

Avg. yearly helpful votes for reviews (cum.) 

 

Avg. review length (cum.) 

Std. of review length (cum.) 

Avg. review length (cum.) 

 

# of overlapping competitors (one-period) 

# of non-overlapping competitors (one-period) 

# of new entries (one-period) 

# of new exits (one-period) 

# of competitors (one-period) 

Avg. of competitors’ # of photos (cum.) 

Avg. of competitors’ # of reviews (cum.) 

Avg. of competitors’ # of reviews (one-period) 

Avg. of competitors' # of photos and reviews (cum.) 

 

Correlations Between Treatment and Control Variables Before and After Orthogonalization 

 We carry out an orthogonalization procedure (Step 1 in Figure A17) to further reduce correlations 

between treatment variables and controls. We report correlations between treatment and control variables 

before and after orthogonalization. The idea of examining such correlations is similar to the matching 

quality check under traditional propensity score matching methods (Austin 2009). Table A26 displays the 

maximum correlation coefficient between each treatment variable and their controls before and after 

orthogonalization. For example, when the cumulative number of photos and reviews is the treatment 

variable, we check its correlation with each control variable (i.e., all other treatment variables in the 

second column of Table A26, restaurant quality dimensions, zip codes, and years). Before 

orthogonalization, the maximum correlation between cumulative UGC volume and controls was 0.40. 

After orthogonalization, the maximum correlation is reduced to 0.08. It is evident that the correlations 

between the treatment and control variables are greatly reduced after orthogonalization. 

As a robustness check, we also double-check the quality of the propensity scores 𝑊̂𝑖𝑡−1
(−𝑖)

 (𝑿𝑖𝑡−1) 

(the second term of the first part of Equation 3 in the paper) generated in the orthogonalization step. We 

choose to perform this robustness check on binary treatment variables, given that such a conventional 

balance check method is only applicable to binary variables. The intuition is, if the quality of the 

propensity scores is good, we would see that the control variables adjusted by the propensity scores are 

balanced across the treated and untreated conditions. For example, suppose that the treatment variable is 

chain status and that one control variable is age. To check the extent to which age is balanced in the 

observations of chain and independent restaurants, we compute the normalized balance diagnostic 𝑑 

(Austin 2011) for age as in Equation (A2) before and after the adjustment (𝑑𝑟𝑎𝑤, 𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑). 𝑎𝑔𝑒̅̅ ̅̅ ̅𝐷 is the 

average of age and 𝑠𝑎𝑔𝑒 𝐷
2  is the variance of age for observations of 𝐷 ∈ (𝑐ℎ𝑎𝑖𝑛, 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡), 

respectively. Following Austin (2011) , we define weight for adjustment as 𝜑𝑖𝑡−1 = [
𝑐ℎ𝑎𝑖𝑛𝑖

𝑐ℎ𝑎𝑖𝑛̂𝑖𝑡−1
(−𝑖)

(𝑿𝑖𝑡−1)
+
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1−𝑐ℎ𝑎𝑖𝑛𝑖

1−𝑐ℎ𝑎𝑖𝑛̂
𝑖𝑡−1
(−𝑖)

(𝑿𝑖𝑡−1)
] 7. Then following Austin and Stuart (2015), 𝑎𝑔𝑒̅̅ ̅̅ ̅𝐷,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =

∑ 𝜑𝑖𝑡𝑎𝑔𝑒𝑖𝑡𝑖 ∈𝐷

∑ 𝜑𝑖𝑡𝑖∈𝐷
  and 

𝑠𝑎𝑔𝑒 𝐷,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 =

∑ 𝜑𝑖𝑡𝑖 ∈𝐷

(∑ 𝜑𝑖𝑡)𝑖 ∈𝐷
2−∑ 𝜑𝑖𝑡

2
𝑖 ∈𝐷

∑ 𝜑𝑖𝑡(𝑎𝑔𝑒𝑖𝑡 − 𝑎𝑔𝑒̅̅ ̅̅ ̅𝐷,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑)
2

𝑖 ∈𝐷 , with 𝐷 ∈

(𝑐ℎ𝑎𝑖𝑛, 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡). The normalized balance diagnostic 𝑑 is calculated for other control variables in 

the same fashion. 

(A2)       𝒅𝒓𝒂𝒘 =
𝒂𝒈𝒆̅̅ ̅̅ ̅̅ 𝒄𝒉𝒂𝒊𝒏−𝒂𝒈𝒆̅̅ ̅̅ ̅̅ 𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕

√
𝒔𝒂𝒈𝒆𝒄𝒉𝒂𝒊𝒏

𝟐 +𝒔𝒂𝒈𝒆𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕
𝟐

𝟐

, 𝒅𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅 =
𝒂𝒈𝒆̅̅ ̅̅ ̅̅ 𝒄𝒉𝒂𝒊𝒏,𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅−𝒂𝒈𝒆̅̅ ̅̅ ̅̅ 𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕,𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅

√
𝒔𝒂𝒈𝒆𝒄𝒉𝒂𝒊𝒏,𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅

𝟐 +𝒔𝒂𝒈𝒆𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕,𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅
𝟐

𝟐

  

Figure A18 visualizes 𝑑𝑟𝑎𝑤 and 𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  when chain status is the treatment variable, where the 

x-axis is the normalized balance diagnostic 𝑑 and y-axis lists names of all control variables. As per Austin 

(2009), d ≤ 0.2 indicates adequate balance in control variables between treated (chain restaurants) and 

untreated (independent restaurants) groups. For example, in Figure 18, 𝑑𝑟𝑎𝑤 for age is bigger than 0.2, 

while the 𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  for age is smaller than 0.2, indicating that the control variable age is balanced across 

the chain and independent restaurants after being adjusted by the propensity scores generated by the 

causal forests. Figure 18 shows 𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ≤ 0.2 for all control variables.  

 
7 This weight is conventionally used by inverse probability of treatment weighting methods to estimate the average 

treatment effect (ATE), where 𝑐ℎ𝑎𝑖𝑛̂𝑖𝑡−1
(−𝑖) (𝑿𝑖𝑡−1) is the probability of being treated (chain restaurants in this 

example) and 1 − 𝑐ℎ𝑎𝑖𝑛̂𝑖𝑡−1
(−𝑖) (𝑿𝑖𝑡−1) is the probability of being untreated (independent restaurants in this example) 

(Austin 2011). Namely, each sample's weight is equal to the inverse of the probability of receiving the condition the 

subject received. 
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Table A28 Correlations between Treatment and Control Variables Before and After 

Orthogonalization 

Type Treatment variable 

Maximum 

correlation 

coefficient 

between 

treatment and 

controls before  

orthogonalization 

Maximum 

correlation 

coefficient 

between 

treatment and 

controls after 

orthogonalization 

Photo and review # of photos and reviews (cum.) 0.40 0.08 

Photo 

% of food photos (cum.) 0.36 0.07 

% of outside photos (cum.) 0.23 0.06 

% of interior photos (cum.) 0.19 0.06 

% of dink photos (cum.) 0.16 0.03 

% of menu photos (cum.) 0.09 0.04 

% of photos on food and drink (cum.) 0.36 0.05 

% of photos with helpful votes (cum.) 0.31 0.04 

Review 

% of mixed/negative reviews on food (cum.) 0.23 0.04 

Avg. yearly helpful votes for reviews (cum.) 0.20 0.06 

Avg. review length (cum.) 0.23 0.08 

Avg. star rating (cum.) 0.32 0.05 

Std. of star ratings (cum.) 0.32 0.04 

Company 

Chain 0.56 0.05 

Age <= 1 0.26 0.04 

Age 2-3 0.21 0.03 

Age 4-7 0.21 0.03 

Age 8-21 0.11 0.03 

Age 22-42 0.24 0.03 

Age > 42 0.50 0.05 

Price level 0.28 0.09 

Mexican 0.14 0.03 

American (traditional) 0.25 0.05 

Pizza 0.33 0.05 

Nightlife 0.27 0.06 

Fast Food 0.47 0.04 

Sandwiches 0.17 0.04 

American (new) 0.20 0.05 

Burgers 0.29 0.03 

Italian 0.33 0.03 

Chinese 0.14 0.05 

Competition 

# of competitors (one-period) 0.58 0.20 

Avg. of competitors' # of photos and reviews (cum.) 0.55 0.19 

Avg. of competitors' avg. star rating (cum.) 0.23 0.06 
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Figure A19 An Example of Control Variable Balance Check before and after Orthogonalization  

(Treatment Variable: Chain) 

y-axis lists names of all control variables when chain status is the treatment variable. 
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Avg. sentiment of food (cum.)

% of reviews mentioning price (cum.)
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% of reviews mentioning service (cum.)
% of reviews mentioning food (cum.)
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Avg. of competitors' # of photos and re views (cum.)

# of competitors
Chinese
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American (new)
Sandwiches

Fast Food
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Mexican
Price level

Age
Std. of star ratings (cum.)

Avg. star rating (cum.)
Avg. review length (cum.)

Avg. yearly helpful votes for reviews (cum.)
% of mixed/negative reviews on food (cum.)

% of photos with helpful votes (cum.)
% of photos on food and drink (cum.)

% of menu photos (cum.)
% of drink photos (cum.)

% of outside photos (cum.)
% of interior photos (cum.)

% of food photos (cum.)
# of photos and reviews (cum.)

0.0 0.5 1.0

Absolute Mean Differences

Sample

Unadjusted

Adjusted

Covariate Balance

0.2 

Normalized balance diagnostic (𝑑) 

Raw 

# of competitors (one-period) 
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Building Honest Trees 

 In Step 2 of Figure A17, we follow Athey et al. (2019) by building honest trees to weight the 

similarity between a set of values of controls 𝒙 and an arbitrary 𝑿𝑖𝑡−1. For a consistent estimation of the 

treatment effects, honest trees use separate subsamples of observations for placing the splits and 

calculating similarity weights. Let us grow B (B=2000) trees, with each tree (indexed by 𝑏) built with a 

random subsample of observations 𝒮𝑏 and a random subsample of control variables. Each tree aims to 

group observations 𝑿𝑖𝑡−1 similar to 𝒙 in one leaf. Denote the leaf containing 𝒙 as 𝐿𝑏(𝒙). The similarity 

between observation 𝑿𝑖𝑡−1 and 𝒙 measured by tree 𝑏 is thus defined as 𝛼𝑏,𝑖𝑡(𝒙)  =
𝕝(𝑿𝑖𝑡−1∈𝐿𝑏(𝒙))

|𝐿𝑏(𝒙)|
. Then, 

the overall similarity between 𝑿𝑖𝑡−1 and 𝒙, denoted by 𝛼𝑖𝑡(𝒙), captures the frequency the 𝑿𝑖𝑡−1 

observation falls into the same leaf as 𝒙: 𝛼𝑖𝑡(𝒙) =
1

𝐵
∑ 𝛼𝑏,𝑖𝑡(𝒙)𝐵

𝑏=1 .  

 As discussed in the paper, our cluster-robust causal forests account for within-restaurant variation 

by allowing clustered errors. Technically, to allow errors to be correlated within clusters, we first draw a 

subsample of clusters 𝐼𝑏 ⊆ {1,2, … , 𝐼} when building each tree; then 𝒮𝑏 is formed by all observations from 

the clusters 𝐼𝑏.8  

 

Robustness Check for Causal Forests Estimation 

Related to robustness check #6 for the restaurant survival predictive model in Appendix D, we re-estimate 

the causal forests by dropping age 0. Table A28 below presents the causal forests estimates for treatment 

variables. The results are qualitatively consistent with those in Table 8 of the paper. In particular, for 

photo-related treatment variables, the significance and directions of effects for variables with a significant 

effect are the same as those in Table 8 of the paper. Additionally, magnitudes of effects for photo 

variables with a significant effect are similar to those in Table 8 of the paper.  

 

  

 
8 https://grf-labs.github.io/grf/REFERENCE.html#cluster-robust-estimation 
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Table A29. Photo-Related Results of Cluster-Robust Causal Forests without Age=0 Restaurant-

Year Observations 

 Treatment variable 
Parameter 

Estimate 
SE 

Photo and review # of photos and reviews (cum.) -0.0284  0.0147 

Photo 

% of food photos (cum.) 0.0480 *** 0.0056 

% of outside photos (cum.) 0.0305 *** 0.0092 

% of interior photos (cum.) 0.0348 ** 0.0121 

% of dink photos (cum.) -0.0503  0.1257 

% of menu photos (cum.) 0.0095  0.0566 

% of photos on food and drink (cum.) -0.0098  0.0130 

% of photos with helpful votes (cum.) 0.0540 *** 0.0037 

Review 

% of mixed/negative reviews on food (cum.) -0.0747 *** 0.0130 

Avg. yearly helpful votes for reviews (cum.) 0.0344 *** 0.0042 

Avg. review length (cum.) -0.0036 *** 0.0005 

Avg. star rating (cum.) 0.0051 ** 0.0016 

Std. of star ratings (cum.) -0.0238 *** 0.0046 

Company  

 

Chain 0.0226 *** 0.0024 

Age <= 1 -0.0758 *** 0.0066 

Age 2-3 -0.0266 *** 0.0032 

Age 4-7 0.0011  0.0027 

Age 8-21 0.0236 *** 0.0017 

Age 22-42 0.0201 *** 0.0020 

Age > 42 0.0209 *** 0.0026 

Price level -0.0067 *** 0.0017 

Mexican 0.0152 *** 0.0028 

American (traditional)  0.0068 ** 0.0025 

Pizza 0.0023  0.0030 

Nightlife 0.0142 *** 0.0028 

Fast Food 0.0094 *** 0.0029 

Sandwiches 0.0049  0.0028 

American (new)  -0.0017  0.0034 

Burgers -0.0007  0.0031 

Italian -0.0001  0.0032 

Chinese 0.0329 *** 0.0031 

Competition 

# of competitors (one-period) -0.0141 *** 0.0036 

Avg. of competitors' # of photos and reviews (cum.) -0.0658 *** 0.0112 

Avg. of competitors' avg. star rating (cum.) -0.0166 * 0.0079 

Additional controls 

Restaurant quality dimensions including: 

1) Prop. of reviews mentioning each restaurant quality dimension (food, service, 

environment, price) (cum.) 

2) Avg. sentiment of each dimension (cum.) 

Zip codes    

Year dummies    

*** p<0.001, ** p<0.01, * p<0.05. A positive sign means positive association with restaurant survival. 

Each row is a separate cluster-robust causal forests estimation. We rescaled “avg. review length (cum.),” 

“# of competitors (one-period),” and “avg. of competitors' # of photos and reviews (cum.)” by 1/100. 

Avg. sentiment of each quality dimension is not included as controls when “avg. star rating” is the 

treatment variable due to high correlation. 
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